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1 Introduction

The Janus solution in Type IIB supergravity [1] provides one of the simplest deformations
of the maximally supersymmetric AdS5 × S5 solution. The original Janus solution has
vanishing 3-form fields and breaks all supersymmetries, but solutions with non-vanishing
3-form fields which preserve various degrees of supersymmetry exist as well. Janus solu-
tions with 4 and 16 supersymmetries were constructed respectively in [2, 3], and in [4, 5]1.
The Type IIB Janus solutions exhibit a common characteristic, namely their non-trivial
space-dependence of the dilaton field, and smooth interpolation between several different
asymptotic AdS5 × S5 regions, each of which has an independent constant dilaton expec-
tation value. The holographic duals to these Janus solutions are interface/defect theories
in which the gauge coupling is constant throughout the bulk of each half-space, but is
allowed to jump across a planar 2+1-dimensional interface/defect, where the half-spaces
join together. Generally, local gauge invariant operators which are localized on the inter-
face/defect may be inserted, and these are in fact required for supersymmetry [10, 11].

At first sight, it may seem that no Janus solutions can exist in M-theory, since there
is no dilaton field in M-theory.

1See [6–9] for earlier and related work on the holographic description of BPS defects.
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In this paper we will show that, contrary to this naive expectation, there actually ex-
ists a regular one-parameter family of deformations of the maximally symmetric AdS4×S7

solution for M-theory, which is invariant under SO(2, 2) × SO(4) × SO(4), preserves 16
supersymmetries, and can be interpreted as a Janus-like solution in M-theory. Its full su-
pergroup invariance is OSp(4|2,R)×OSp(4|2,R). This family of solutions is characterized
not by the space-dependence of the dilaton — since there is no dilaton in M-theory – but
rather by the space-dependence of the 4-form field of M-theory. Holographically, these
fields correspond to adding counterterms which are localized at the interface/defect. As
we shall show below, the Janus-like deformation in M-theory corresponds to the addition
of such counterterms for the M2-brane CFT.

The remainder of this paper is organized as follows. In section 2, we begin by carrying
out a linearized analysis in an AdS4 background for the effect of inserting a dimension 2
operator on the interface/defect. We shall confirm that smooth deformations exist at this
order. In section 3, we exhibit the exact one-parameter family of Janus-like solutions in M-
theory, and discuss their holographic interpretation. In section 4, we show that our Janus
solutions are invariant under the Zk transformations required to carry out the Aharony,
Bergman, Jafferis, Maldacena (ABJM) [12] reduction of AdS4×S7 to AdS4×CP3 in Type
IIA. Quotienting our Janus deformations of AdS4×S7 by Zk, k 6= 1, 2, yields new solutions
which are invariant under SO(2, 2) × SO(4) × U(1)2, preserve 12 supersymmetries, and
exhibit invariance under the supergroup OSp(3|2,R)×OSp(3|2,R).

2 Linearized analysis

The starting point of the linearized analysis is 4-dimensional gravity with negative cos-
mological constant, minimally coupled to a scalar or pseudo-scalar field φ of mass m. In
the following we recall some basic features of the AdS/CFT correspondence [13–15] (for
reviews, see [16, 17]). The action is given by,

S =
∫
d4x
√
−g
(
R− Λ− 1

2
∂µφ∂

µφ− 1
2
m2φ2

)
(2.1)

The Janus solution [1] provides a simple holographic description of an interface conformal
field theory. Following this example, we parametrize the AdS4 metric by a slicing coordinate
µ, and a transverse AdS3 space for each value of µ, and choose φ to only depend on µ,

ds2 = f(µ)
(
dµ2 + ds2

AdS3

)
φ = φ(µ) (2.2)

We set the cosmological constant equal to Λ = −6, so that the AdS4 space has unit radius.
The pure AdS4 solution is then given by,

f(µ) =
1

cos2(µ)
φ = 0 (2.3)

where the range of µ is µ ∈ [−π/2, π/2].
To obtain a Janus-like deformation, at linearized order, we choose the mass-square of

the field φ to be m2 = −2. To justify this choice, we recall the AdS/CFT relation between
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m2 and the conformal dimension ∆ of the operator which is dual to φ in the dual CFT,

m2 = ∆(∆− 3) (2.4)

For m2 = −2, this equation has two solutions, namely ∆ = 1, and ∆ = 2. As a result, near
the boundary components of AdS4 at µ ∼ ±π/2, the asymptotic behavior of φ is given by,

φ(µ) = φ1(µ∓ π/2) + φ2(µ∓ π/2)2 + · · · (2.5)

where φ1 and φ2 are constants. Note that the mass m2 = −2 lies in the range −9/4 < m2 <

−5/4 where both the modes associated with φ1 and φ2 in (2.5) are normalizable. Hence,
there is an ambiguity in identifying which mode sources the operator and which mode turns
on the expectation value. This ambiguity is related to the fact that the equation (2.4) for
m2 = −2 has two solutions corresponding to operators of conformal dimension ∆ = 1 and
∆ = 2. Generally, in unitary CFTs, both scaling dimensions are allowed. The ambiguity
can be resolved, however, for supergravity theories [18, 19]. For the case at hand, the
results of these papers imply that pseudo-scalar fields of mass m2 = −2 correspond to
operators with ∆ = 2, for which the mode φ1 sources the operator, while φ2 turns on its
expectation value. Scalar fields of mass m2 = −2 correspond to operators with ∆ = 1, for
which the roles of φ1 and φ2 are reversed.

In the remainder of the paper, we will focus on the first case. Thus, φ will be a pseudo-
scalar, and we shall denote the CFT dual operator by O2; its dimension is ∆ = 2. The
operator O2 would be sourced — in the bulk of the CFT — by the φ1 mode. We shall set
φ1 = 0, so that the operator is not sourced in the bulk of the CFT. Thus, in the gravity
dual, O2 will not be sourced in the two boundary half-spaces that are dual to the bulk of
the CFT. The mode φ2 then corresponds to the vacuum expectation value of O2 in the bulk
of the CFT. The operator O2 will be sourced on the interface/defect, however, confirming
that its conformal dimension 2 is precisely the one needed to maintain conformal invariance
on the interface/defect.

In the following, we consider the linearized problem of small fluctuations around the
AdS4 background (2.3). The equation for the pseudo-scalar field φ becomes,

d2φ

dµ2
+ 2 tanµ

dφ

dµ
+

2
cos2 µ

φ = 0 (2.6)

which can be solved exactly,

φ(µ) = φ1 cosµ sinµ+ φ2 cos2 µ (2.7)

Upon setting φ1 = 0, as was advocated above, the linearized solution φ(µ) of (2.7) indeed
reproduces the asymptotic behavior of (2.5). Note that both the metric back-reaction as
well as the coupling of the pseudo-scalar φ to other fields will be of order (φ2)2 and can be
neglected in the linearized approximation. The solution of the full non-linear equation can
only be obtained numerically and will not be needed in this paper, since an exact Janus
solution of 11-dimensional supergravity will be presented in section 3.
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2.1 Holographic interpretation

In this section we adapt an argument given in [4] to the context of the AdS4/CFT3 cor-
respondence in M-theory. Our goal is to confirm that the linearized solution presented in
the previous section indeed corresponds to sourcing the operator O2 dual to the field φ on
a 1+1-dimensional interface/defect, instead of sourcing O2 on the entire 2+1-dimensional
boundary. The metric for the AdS3 slicing of AdS4 takes the following form near µ = ±π/2.

ds2 =
1

cos2 µ

(
dµ2 +

1
z2

(−dt2 + dx2 + dz2)
)

=
1

z2 cos2 µ

(
z2dµ2 + (−dt2 + dx2 + dz2)

)
(2.8)

It is now easy to see that the boundary of AdS4 in this coordinate system consists of three
components [1]. The limits µ → ±π/2 correspond to two 2+1-dimensional half spaces
(since the range of z is the positive real numbers). The two half spaces are glued together
along a 1+1-dimensional interface/defect which is associated with the boundary of the
AdS3 slice and is reached as z → 0 with µ arbitrary. With the definition ε = | cos(µ)|z,
the boundary components are reached uniformly as ε → 0. The boundary source for an
operator O2 can be obtained by isolating the term in φ which scales like ε3−∆.

φsource = lim
ε→0

(
ε∆−3φ(µ)

)
= lim

ε→0

(
| cos(µ)|

z
φ2

)
(2.9)

The limits depends upon the direction along which ε = 0 is being approached. As one
keeps z 6= 0 fixed, and takes µ → ±π/2, the two half spaces µ = ±π/2 are approached
away from the interface/defect. It follows from (2.9) that this limit, and thus the source
for the O2 operator, vanishes. This means the dual operator O2 is not inserted in the
boundary CFT away from the interface/defect.

The interface/defect is approached as one takes z → 0 with µ 6= ±π/2. In this case the
limit in (2.9), and thus the source for the O2 operator, diverges. This behavior indicates
the presence of a Dirac δ-function source for the operator O2 on the 1+1-dimensional inter-
face/defect. This may be established directly by integrating φsource over a small disk around
ε = 0 in the z, µ-plane. The corresponding integral is given by

∫
dµ dz z φsource and is fi-

nite. Its interpretation is that a term which has δ-function support on the interface/defect
is being added to the Lagrangian of the 2+1-dimensional CFT,

L = LCFT3 + λ δ(x⊥)O2 (2.10)

where x⊥ is the coordinate transverse to the 1+1-dimensional interface/defect. The lin-
earized analysis corresponds to a small perturbation with λ � 1. Since the confor-
mal dimension of the operator O2 is two, its addition to LCFT3 preserves the (global)
1+1-dimensional conformal symmetry of the interface/defect, but breaks the full 2+1-
dimensional conformal symmetry of the CFT.

– 4 –



J
H
E
P
0
6
(
2
0
0
9
)
0
1
8

spin Dynkin label m2 ∆
2 [n, 0, 0, 0] 1/4n(n+ 6) 1/2(n+ 6)
1 [n, 1, 0, 0] + [n− 1, 0, 1, 1] + [n− 2, 1, 0, 0] 1/4n(n+ 2) 1/2(n+ 4)

0+ [n+ 2, 0, 0, 0] + [n− 2, 2, 0, 0] + [n− 2, 0, 0, 0] 1/4(n+ 2)(n− 4) 1/2(n+ 2)
0− [n, 0, 2, 0] + [n− 2, 0, 0, 2] 1/4(n(n+ 2)− 8) 1/2(n+ 4)

Table 1. KK towers of bosonic fields from the supergravity multiplet for n = 0, 1, 2, · · · . Repre-
sentations with negative Dynkin-labels are to be omitted. Here, m2 is the mass of the supergravity
field, and ∆ is the dimension of its dual CFT operator.

spin SO(8) representation mass m2 dimensions ∆
2 1 0 3
1 28 0 2
0+ 35v −2 1
0− 35c −2 2

Table 2. The bosonic fields of 4-dimensional N = 8 gauged supergravity with the mass of the
fields and the dimension of the dual operator in the CFT.

2.2 N = 8 gauged supergravity

In this subsection, we shall inspect the supergravity fields on AdS4×S7 and identify viable
candidates for the pseudo-scalar deformations studied above. The spectrum of the Kaluza-
Klein (KK) compactification of M-theory on AdS4 × S7 has been obtained by [20, 21].2

One gets infinite towers of KK-states organized in representations of the SO(8) R-symmetry
group, as collected in table 1.

There exists a consistent truncation of the theory to the “massless” N = 8 multi-
plet which produces N = 8 gauged supergravity in four dimensions and is given by the
representations with n = 0, summarized in table 2.

Note that the 70 scalars of gauged supergravity split into 35 scalars (denoted 0+ in
table 2) and 35 pseudo-scalars scalars (denoted by 0−). In the KK-reduction the scalars are
obtained from the reduction of the metric component on the sphere whereas the pseudo-
scalars are obtained from the AST field strength on the sphere. As discussed in section 2,
the ambiguity for the conformal dimensions for the operators dual to the (pseudo-) scalars
was resolved in [18, 19] and leads to the values displayed in table 2.

In gauged N = 8 supergravity a Janus interface/defect configuration can be obtained
applying the linearized analysis of section 2 for a pseudo-scalar transforming in the 35c

representation of the SO(8) R-symmetry. This field should be dual to a dimension 2
operator in the CFT3 defined by the decoupling limit of a large number of M2-branes.

In principle one could try to solve the equations of motion for the N = 8 gauged
supergravity and a Janus Ansatz to obtain a fully non-linear solution dual to the inser-
tion of such an operator. Solving the full second order equations of motion is, however,

2See [22] for a dictionary between supergravity and AdS/CFT conventions.
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prohibitively complicated. A different approach is to ask wether there are interface/defect
solution which preserve some of the 32 supersymmetries and correspond to superconformal
interface/defects. Solving the resulting BPS-equation is generically easier than solving the
equations of motion.

Note that the 35c representation can be characterized as the rank four self-dual an-
tisymmetric tensor representation of SO(8). Turning on such a field will therefore break
the SO(8) R-symmetry down to SO(4)× SO(4). Hence one expects the resulting theory to
have SO(4)× SO(4) unbroken R-smmetry.

In the following we will use the results of [23] to obtain a solution of 11-dimensional
supergravity, which preserves sixteen supersymmetries, is locally asymptotic to AdS4×S7,
preserves SO(2, 2) × SO(4) × SO(4) symmetry and has all the characteristics of a fully
non-linear and back-reacted interface/defect solution discussed above.

3 The half-BPS Janus solutions in M-theory

The linearized analysis for a pseudo-scalar field φ which is dual to a dimension 2 gauge
invariant operatorO2 localized on a 1+1-dimensional interface/defect, and the inspection of
multiplets for such fields in gauged N = 8 supergravity on AdS4, reveal a natural candidate
for an M-theory Janus solution. The conformal invariance of the interface/defect theory,
which is expected to be maintained by the operator O2, imposes SO(2, 2) symmetry. An
expectation value to an operator in the 35c representation of SO(8) leaves a residual
SO(4) × SO(4) symmetry, as explained in the preceding section. Thus, the full bosonic
symmetry of the corresponding Janus solution in M-theory should be SO(2, 2) × SO(4) ×
SO(4). Remarkably, such solutions exist and preserve 16 supersymmetries, a result we shall
establish in the present section.

The symmetry and supersymmetry conditions, advocated in the preceding paragraph,
place the problem precisely in the context of the general analysis of half-BPS solutions
in M-theory with SO(2, 2) × SO(4) × SO(4) symmetry, for which the general local exact
solution was derived in [23] (for space-times asymptotic to either AdS4×S7 or AdS7×S4).
We begin by briefly reviewing the salient points of the solutions obtained in [23]. The 11-
dimensional metric Ansatz consists of a fibration of the unit radius metric of AdS3×S3

2×S3
3

over a 2-dimensional Riemann surface Σ with boundary ∂Σ,

ds2 = f2
1ds

2
AdS3

+ f2
2ds

2
S3

2
+ f2

3ds
2
S3

3
+ ds2

Σ (3.1)

where ds2
AdS3

and ds2
S3

2,3
denote the metrics with unit radius on the corresponding spaces,

which are invariant respectively under SO(2, 2) and SO(4). The SO(2, 2)×SO(4)×SO(4)-
invariant Ansatz for the 3-form gauge potential C3, and for the 4-form field strength F4 =
dC3 are given as follows,

C3 = b1ω̂AdS3 + b2ω̂S3
2

+ b3ω̂S3
3

F4 = g1aωAdS3 ∧ ea + g2a ωS3
2
∧ ea + g3a ωS3

3
∧ ea (3.2)

where ω̂AdS3 and ω̂S3
2,3

are the volume forms on the unit-radius spaces AdS3 and S3
2,3

respectively, and ea, for a = 1, 2 is an orthonormal frame on Σ. The volume forms of the

– 6 –
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full space-time metric are related to the ones with unit volume by ωAdS3 = f3
1 ω̂AdS3 , and

ωS3
2,3

= f3
2,3 ω̂S3

2,3
. In terms of an arbitrary system of local complex coordinates w, w̄ on Σ,

the metric ds2
Σ in (3.1) reduces to the conformal form,

ds2
Σ = 4ρ2|dw|2 (3.3)

The metric factors f1, f2, f3, ρ, as well as the flux fields b1, b2, b3, and g1a, g2a, and g3a, only
depend on Σ. The Ansatz automatically respects SO(2, 2)×SO(4)×SO(4) symmetry, which
may also be viewed as the symmetry of an AdS/CFT dual 1+1-dimensional conformal
interface/defect in the 3-dimensional M2 brane CFT.

3.1 Equations for 1/2 BPS solutions

In [23], the BPS equations governing half-BPS solutions were reduced to constructing a
Riemann surface Σ with boundary, a real positive harmonic function h on Σ, and the
solution to a first order partial differential equation on Σ for a complex-valued field G,
subject to a point-wise quadratic constraint. The partial differential equation for G is
given by,

∂wG =
1
2

(G+ Ḡ)∂w lnh (3.4)

for an arbitrary complex coordinate system w, w̄ on Σ. For solutions which are locally
asymptotic to AdS4 × S7 (referred to as “case I” in [23]), the field G is subject to the
following point-wise quadratic constraint,

|G(w, w̄)|2 ≥ 1 for all (w, w̄) ∈ Σ (3.5)

We define the following function W on Σ,

W 2 ≡ 4|G|4 + (G− Ḡ)2 (3.6)

Assuming that the point-wise quadratic constraint |G|2 ≥ 1 is obeyed, we automatically
have W 2 ≥ 0, so that W is real. The special value W 2 = 0 corresponds to either G = +i
or G = −i. The metric factors in (3.1) are then expressed as follows,,

f6
1 =

h2W 2

162(|G|2 − 1)2

f6
2 =

h2(|G|2 − 1)
4W 4

(
2|G|2 + i(G− Ḡ)

)3
f6

3 =
h2(|G|2 − 1)

4W 4

(
2|G|2 − i(G− Ḡ)

)3 (3.7)

The metric factor ρ in (3.3) is given by,

ρ6 =
|∂wh|6

162h4

(
|G|2 − 1

)
W 2 (3.8)

– 7 –



J
H
E
P
0
6
(
2
0
0
9
)
0
1
8

The anti-symmetric tensor field-strengths are expressed in terms of g1a, g2a, and g3a. They
can be simply related to currents ∂wb1, ∂wb2, and ∂wb3, on Σ, which are conserved as a
result of the Bianchi identities, and are given as follows,

(f1)3g1w = −∂wb1 = − 3W 2∂wh

32G(|G|2 − 1)
− 1 + |G|2

16G(|G|2 − 1)2
Jw

(f2)3g2w = −∂wb2 = −
(G+ i)

(
2|G|2 + i(G− Ḡ)

)2
W 4

Jw

(f3)3g3w = −∂wb3 = +
(G− i)

(
2|G|2 − i(G− Ḡ)

)2
W 4

Jw (3.9)

where the following intermediate quantity was used for notational compactness,

Jw =
1
2

(GḠ− 3Ḡ2 + 4GḠ3)∂wh+ hG∂wḠ (3.10)

It was shown in [23] that the equations of motion of as well as the Bianchi identities are
satisfied for any harmonic h and any G which solves (3.4).

3.2 The AdS4 × S7 solution

The simplest solution is the maximally symmetric AdS4 × S7 itself. The corresponding
Riemann surface is the infinite strip,

Σ = {w ∈ C, w = x+ iy, x ∈ R, 0 ≤ y ≤ π/2} (3.11)

Note that the Riemann surface Σ has two boundary components, namely y = 0 and
y = π/2. In these coordinates, the functions h and G for the AdS4 × S7 solution are
given by,3

h = 4i
(

sh(2w)− sh(2w̄)
)

G = i
ch(w + w̄)

ch(2w̄)
(3.12)

It is easy to check that the partial differential equation (3.4) as well as the point-wise
quadratic constraint (3.5) are satisfied. Using (3.7), the metric factors become,

f1 = ch(2x) f2 = 2 cos(y) f3 = 2 sin(y) ρ = 1 (3.13)

The boundary may be characterized by the vanishing of the harmonic function h = 0, or
alternatively, by G = ±i. On the lower boundary of the strip Σ where y = 0 one has
G = +i, which implies that the radius f2 of S3

2 vanishes. On the upper boundary of the
strip Σ where y = π/2 one has G = −i, which implies that the radius f3 of S3

3 vanishes.
The boundary of AdS4, on the other hand, is located at x = ±∞.

3For simplicity, we shall exhibit the solutions with unit AdS4-radius. The solution for general AdS4-

radius R0 may be obtained by scaling h→ R3
0h, while leaving Σ, w, w̄, and G unchanged. As a result, the

metric factors scale as follows, fi → R0fi, ρ→ R0ρ, while the flux fields scale as bi → R3
0bi for i = 1, 2, 3.

– 8 –
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3.3 The half-BPS Janus solution

It turns out that there is a simple deformation of AdS4 × S7 (reviewed in the previous
section) which corresponds to a Janus solution in M-theory. As before, the holomorphic
coordinate is denoted as w = x+ iy and the strip is parametrized as (3.11). The harmonic
function h is taken to be proportional to the one of (3.12), but is rescaled in order for the
asymptotic AdS4×S7 solution to have the same radius as the undeformed solution (3.12),
namely with unit AdS4-radius,

h =
4i√

1 + λ2

(
sh(2w)− sh(2w̄)

)
(3.14)

The expression for G is given by

G = i
ch(w + w̄) + λ sh(w − w̄)

ch(2w̄)
(3.15)

It is easy to check that the partial differential equation (3.4) as well as the positivity
constraint (3.5) are satisfied for any real value of λ. The solution forms a one-parameter
deformation of AdS4 × S7, which one recovers by setting λ = 0.

The metric factors can be expressed concisely in terms of two functions,

F+(x, y) = 1 + 2λ
(

sh(2x) + λ
)

cos2(y)/ ch2(2x)

F−(x, y) = 1− 2λ
(

sh(2x)− λ
)

sin2(y)/ ch2(2x) (3.16)

The metric factors (3.7) become,

f1 =
ch(2x)√
1 + λ2

F+(x, y)
1
6F−(x, y)

1
6

f2 = 2 cos(y)F+(x, y)
1
6F−(x, y)−

1
3

f3 = 2 sin(y)F−(x, y)
1
6F+(x, y)−

1
3

ρ = F+(x, y)
1
6F−(x, y)

1
6 (3.17)

Note that the metric factor for the base space Σ becomes non-trivial for the deformed
solution. Another interesting feature of this solution is that the size of each three sphere
at the part of the boundary where it does not vanish, i.e. y = 0 for f2 and y = π/2 for f3,
becomes x dependent in contrast to the AdS4 × S7 solution where it is constant.

The AST fields along the two three spheres are non-vanishing for the deformed solution.
The formulae for the fieldstrengths (3.9) can be integrated and one obtains the following
expressions for the AST potentials.

b2 = −8λ
√

1 + λ2 sin4(y)
ch2(2x) F−(x, y)

b3 =
8λ
√

1 + λ2 cos4(y)
ch2(2x) F+(x, y)

(3.18)

The explicit formulae for the AST potential b1 are also easy to calculate but will not be
needed in the following. We have checked that the solutions indeed satisfies all equations
of motion of 11-dimensional supergravity. The solution preserves sixteen of the thirty two
supersymmetries by construction [23].

– 9 –



J
H
E
P
0
6
(
2
0
0
9
)
0
1
8

Figure 1. Metric factors of the two spheres for the deformation λ = 1 .

Figure 2. AST potentials along the two three spheres for the deformation λ = 1 .

3.4 Holographic interpretation

In the previous section we utilized the coordinate system in which Σ is a strip parametrized
as Σ = {(x, y), x ∈ R, 0 ≤ y ≤ π/2}. The boundaries of Σ at y = 0, π/2 are the location
where the volume of the first and second three sphere vanishes. For fixed x the finite
y-interval together with the two three spheres produces a deformed seven sphere with
SO(4) × SO(4) symmetry. The asymptotic AdS region is reached by taking x → ±∞. In
this limit the leading terms of the metric factors (3.17) behave as follows,

ds2 =
1
4
e±4x −dt2 + ds2 + dz2

z2
+ 4 sin2(y) ds2

S3
2

+ 4 cos2(y) ds2
S3

3
+ 4(dx2 + dy2) + o(e∓4x)

(3.19)
which is the asymptotic form of AdS4×S7. The leading terms for the 3-form potential C3

in the limit x→ ±∞ can be obtained from (3.18),

C3 =
1
16
e±6xω̂AdS3 −

32λ√
1 + λ2

e∓4x
(

sin4(y) ω̂S3
2
− cos4(y) ω̂S3

3

)
+ o(e∓2x) (3.20)
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The first term in (3.20) produces the four form flux supporting the AdS4 × S7 solution.
The second term vanishes when λ = 0, which corresponds to the undeformed solution.
Note that the deformed solution has a nontrivial profile for the AST potential along the
spheres, but it is easy to see that the conserved M5-brane charge integrates to zero.

To make contact with the discussion of section 2, we first note that the dependence on
the y and sphere coordinates in the second and third terms in (3.20) corresponds to a specific
AST spherical harmonic on the sphere. The Kaluza-Klein reduction [20] produces the
pseudo-scalar field φ of mass m2 = −2 transforming in the 35c of the SO(8) R-symmetry.

We can relate the coordinate x which parametrizes the AdS3 slicing coordinate in the
strip parametrization to the coordinate µ which was employed in section 2 by,

µ∓ π/2 = e∓2x (3.21)

valid in the limit x → ±∞. It follows from (3.20) that the pseudo-scalar field mode
associated with the KK reduction of the AST potential has the following behavior,

lim
µ→±π/2

φ = constant× (µ∓ π/2)2 + o(µ∓ π/2)4 (3.22)

Consequently, the holographic behavior of φ is exactly of the type discussed in section
2. The holographic interpretation of our solution is that a dimension two operator which
preserved SO(4)× SO(4) R-symmetry, as well as sixteen supersymmetries, is sourced at a
1+1-dimensional interface/defect.

In the context of BPS Janus solutions in Type IIB the related CFT analysis of super-
symmetric interface/defects in N = 4 super Yang Mills was carried out in [10, 11, 24, 25].
It would be interesting to pursue a similar analysis for the M2-brane CFT, where significant
progress in the formulation of the theory has been made recently [26–28]. See [29, 30] for
other attempts to obtain Janus like solutions for the M2-brane worldvolume theory.

4 Janus solutions in ABJM theory

Recently, ABJM [12] found a new AdS/CFT correspondence between certain quotients of
AdS4×S7 in M-theory, and 2+1-dimensional CFTs which preserve N = 6 superconformal
symmetry. The remarkable benefit of this correspondence lies in the fact that it provides
a standard field theory description of the corresponding 2+1-dimensional CFTs. In this
section, we show that for each of the ABJM quotients, there exists a corresponding regular
ABJM Janus solution, which may be obtained by quotienting the M-theory Janus solution
of the previous section à la ABJM.

4.1 Construction of the ABJM Janus solution

The supergravity description of ABJM theory is given by the quotient AdS4 × S7/Zk of
the maximally symmetric vacuum AdS4 × S7 by the cyclic group Zk for k ≥ 1. Here, Zk
acts on S7, but does not act on AdS4. The action of Zk on S7 has no fixed points, and
the resulting quotient may be viewed as a line bundle over CP3 whose fiber S1 has radius
1/k. The quotient breaks the SO(8) R-symmetry to SU(4)×U(1).

– 11 –
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The action on S7 may be rendered more explicit by embedding S7 into R8, and
parametrizing R8 by four complex coordinates zi, with i = 1, 2, 3, 4. The Zk transfor-
mation is then defined by zi → zi e

2πi/k for any integer k ≥ 1, and the quotient is obtained
by identifying the points zi and zi e

2πi/k for all four directions i = 1, 2, 3, 4.
To construct the ABJM Janus solution, it will be more useful to exhibit the Zk trans-

formations in terms of real coordinates, on which the action of the full SO(8) is manifest.
The corresponding representation matrix γ in the group SO(8) is then given by γ = e2πH/k,
where H is the following generator of the Lie algebra SO(8),

H =

(
H2 0
0 H3

)
H2 = H3 =

(
ε 0
0 ε

)
ε =

(
0 −1
1 0

)
(4.1)

The notation H2 and H3 has been introduced for the following reason. The M-theory Janus
solution is characterized by the breaking of the Lie algebra SO(8) to SO(4)2⊕ SO(4)3, the
two SO(4)i subalgebras being the isometries of the spheres S3

i for i = 2, 3 of the Janus
solution in (3.1). In the above partition of H into the direct sum of H2 and H3, the
generators are arranged so that H2 ∈ SO(4)2, and H3 ∈ SO(4)3. As a result, the action of
Zk on S7 descends to the Janus solution as a Zk action on S3

2 and S3
3 , whose explicit form

is given by the SO(4) Lie group matrices γ2 = e2πH2/k and γ3 = e2πH3/k.
The action of γ2,3 on S3

2,3 is again without fixed points. Furthermore, the action of
γ2,3 leaves all the other ingredients of the Ansatz of (3.1), (3.2), (3.3), and of the solution
functions h and G invariant. Thus, we are guaranteed that the quotient of the M-theory
Janus solution by the action of Zk will produce a regular family of solutions, parametrized
by the same parameter λ as the M-theory Janus was. The only change to the geometry
resides in the quotient of S3

2 × S3
3 by Zk.

The quotienting of S3 by Zk reduces the isometry group from SO(4) to an SU(2)×U(1)
subgroup. Thus, we expect the ABJM Janus solution to have a compact bosonic symmetry
group SU(2) × SU(2) × U(1)2, as well as, of course, the full isometry SO(2, 2) of AdS3,
producing a total bosonic symmetry group

SO(2, 2)× SO(4)×U(1)2 (4.2)

Supersymmetry is also reduced under quotienting by Zk, k 6= 1, 2. This reduction is
entirely due to the reduction of the number of Killing spinors on S3

2 × S3
3 , and proceeds

in parallel to the corresponding reduction on S7. The 4 independent Killing spinors on
S3

2 × S3
3 are reduced to only 3 Killing spinors on (S3

2 × S3
3)/Zk. For AdS4 × S7, this effect

reduces the total number of supersymmetries from 32 to 24, while for the M-theory Janus
solution, it reduces the number of supersymmetries from 16 to 12. Given these bosonic and
supersymmetries, the corresponding invariance superalgebra of the ABJM Janus solution
is readily obtained,

OSp(3|2,R)×OSp(3|2,R) (4.3)

which is a subgroup of the OSp(4|2,R) × OSp(4|2,R) algebra of the M-theory
Janus solution.
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4.2 Structure of the supergravity multiplets

As pointed out in [31, 32], the spectrum of the KK reduced theory can be obtained by
decomposing the KK spectrum of AdS4 × S7 with respect to SU(4) × U(1) and keeping
only the zero charge sector of the U(1). For the fields of N = 8 gauged supergravity
in table 2, this implies the following decompositions of SO(8) representations under its
SU(4)×U(1) subgroup,

28v → 10 + 62 + 6−2 + 150

35v → 102 + 10−2 + 150

35c → 102 + 10−2 + 150 (4.4)

As a result, out of the 35 pseudo-scalar 0− fields transforming in the 35c of SO(8) in the
KK spectrum, fifteen survive the quotient and transform in the 15 of SU(4). These fields
have mass m2 = −2 and are dual to dimension 2 operators. The linearized analysis of
section one is expected to apply to these states, and it provides further evidence for the
existence of Janus-like interface/defect solutions in this theory.

It is possible to characterize the dual operator using the ABJM worldvolume theory.
The scalars and fermion fields transform as bi-fundamentals of a U(N) × U(N) gauge
theory. There is an SU(2) doublet of bosons A1, A2 and fermions λ1, λ2 which transform
as (N, N̄) under U(N) × U(N) gauge symmetry, whereas a second pair of bosons B1, B2

and fermions χ1, χ2 transforms as (N̄ ,N). The boson and fermion fields can be assembled
into the following multiplets [12, 33, 34],

Y A = (A1, A2, B
†
1, B

†
2) ΨA = (λ1, λ2, χ

†
1, χ
†
2) (4.5)

which transform in the 4 representation of SU(4), wheras the conjugate fields (Y A)† = YA
and (ΨA)† = ΨA transform in the 4̄ of SU(4). The following operators

O1 = tr
(
Y AYB −

1
4
δABY

CYC

)
O2 = tr

(
ΨAΨB −

1
4
δABΨCΨC

)
(4.6)

are conformal primary operator of dimensions ∆ = 1 and ∆ = 2 respectively which trans-
form as the 15 of SU(4). Therefore, they can be identified with the surviving scalar and
pseudo-scalars in the quotient (4.4). Applying the linearized analysis of section 2 to the
field dual to one O2 one expects that a Janus-like interface/defect solution exists for the
AdS4 × S7 quotient.

5 Discussion

In this paper we have presented exact solutions of 11-dimensional supergravity which are
holographically dual to inserting a dimension 2 operator along a 1+1-dimensional inter-
face/defect in the maximally supersymmetric 2+1-dimensional CFT. The M-theory Janus
solution preserves 16 supersymmetries and has SO(2, 2)× SO(4)× SO(4) isometry group,
while the ABJM Janus solution preserves 12 supersymmetries and has SO(2, 2)× SO(4)×
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U(1)2 isometry group. The symmetries combine into an OSp(4|2, R) ⊗ OSp(4|2, R) in-
variance superalgebra of the M-theory Janus solution, and an OSp(3|2, R) ⊗ OSp(3|2, R)
invariance superalgebra for the ABJM Janus solution. Both are subgroups of the super-
group OSp(8|4, R) of the AdS4×S7 vacuum [35]. These solutions are analogs in M-theory
of the Janus solution of Type IIB, even though no dilaton is present in M-theory.

There are several interesting open questions and directions for further research.

1. Can the 11-dimensional Janus solutions be expressed as solutions solely of the mass-
less multiplet of the N = 8 gauged supergravity.

2. Exact solutions, such as the M-theory and ABJM Janus solutions obtained here,
may be used to calculate interesting quantities using the machinery of AdS/CFT.
For example, application of the methods developed in [10, 36, 37] could be used to
calculate correlation functions in the presence of the interface/defect.

3. As the ABJM theory enjoys a well-understood field theoretic CFT description, one
may classify the possible interface/defect terms along the lines of [11] and [24], es-
tablish their symmetries, and derive the associated supergravity solutions.

4. In Type IIB theory, the simplest Janus solution breaks all supersymmetries, has
a non-trivial dilaton profile, and vanishing 3-form flux fields. A natural question
is whether M-theory Janus solutions exist with no, or further reduced supersym-
metry, and whether the corresponding supergravity solutions lend themselves to
exact construction.

5. Finally, does Type IIB supergravity support Janus-type solutions whose dilaton is
constant, but whose 3-form and 5-form fields vary spatially ? The corresponding
CFT dual would be N = 4 super-Yang-Mills with identical gauge couplings on
both sides of the interface/defect, and dimension 3 operators localized on this de-
fect/interface. In other words, does Type IIB admit the Janus-type solutions char-
acteristic of M-theory?

We plan to address some of these questions in the near future.
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